
Noname manuscript No.
(will be inserted by the editor)

Optimizing I/O Forwarding Techniques for

Extreme-Scale Event Tracing

Thomas Ilsche · Joseph Schuchart · Jason Cope · Dries Kimpe · Terry Jones ·

Andreas Knüpfer · Kamil Iskra · Robert Ross · Wolfgang E. Nagel · Stephen Poole

the date of receipt and acceptance should be inserted later

Abstract Programming development tools are a vital com-

ponent for understanding the behavior of parallel applica-

tions. Event tracing is a principal ingredient to these tools,

but new and serious challenges place event tracing at risk on

extreme-scale machines. As the quantity of captured events

increases with concurrency, the additional data can over-

load the parallel file system and perturb the application be-

ing observed. In this work we present a solution for event

tracing on extreme-scale machines. We enhance an I/O for-

warding software layer to aggregate and reorganize log data

prior to writing to the storage system, significantly reduc-

ing the burden on the underlying file system. Furthermore,

we introduce a sophisticated write buffering capability to

limit the impact. To validate the approach, we employ the

Vampir tracing toolset using these new capabilities. Our re-

sults demonstrate that the approach increases the maximum

traced application size by a factor of 5x to more than 200,000

processes.

Keywords event tracing, I/O forwarding, atomic append

T. Ilsche · A. Knüpfer · W. E. Nagel

Technische Universität Dresden, ZIH

01062 Dresden, Germany

E-mail:

{thomas.ilsche,andreas.knuepfer,wolfgang.nagel}@tu-dresden.de

J. Cope · D. Kimpe · K. Iskra · R. Ross

Argonne National Laboratory, 9700 South Cass Avenue,

Argonne, IL 60439, USA

E-mail: {copej,dkimpe,iskra,rross}@mcs.anl.gov

J. Schuchart · T. Jones · S. Poole

Oak Ridge National Laboratory, Mailstop 5164

Oak Ridge, TN 37831, USA

E-mail: {schuchartj,trjones,spoole}@ornl.gov

1 Introduction

The rising levels of concurrency in large-scale computing

systems present a number of challenges to parallel applica-

tion programmers. Scaling to large number of cores intro-

duces performance and correctness effects which do not al-

ways appear when running on smaller systems. At the same

time, the performance analysis tools vital to the high-per-

formance computing (HPC) software ecosystem often do

not scale to these large systems. In addition, those that do

frequently exhibit larger overheads, perturbing the runtime

behavior of the analyzed application, destroying the very

behavior the application developer intends to analyze. One

challenge to scaling these tools is efficiently storing the re-

corded trace data. Tracing tools generate large amounts of

data and must execute efficiently at full scale. Traditional ac-

cess patterns for these tools, such as file per process, file per

thread, and synchronous I/O, do not scale well past tens of

thousands of processes. Such patterns require excessive use

of file metadata operations and overwhelm large-scale stor-

age systems. Synchronous I/O may cause unnecessary de-

lays in trace data collection and skew application execution.

Alternative access patterns, such as a shared file pattern, may

alleviate metadata bottlenecks but inject artificial synchro-

nization into the application. Therefore, a unique data orga-

nization is desired that exploits the loglike I/O behavior of

performance analysis tools, allows for uncoordinated access

to a shared file from multiple processes, and tolerates lazy

I/O semantics.

To achieve and sustain full-size application event trace

recording on large-scale systems, we investigated several

I/O optimizations to support high-performance, scalable, and

uncoordinated write access for event trace data generated by

the Vampir toolset [25]. We observed that the uncoordinated

I/O patterns generated by the VampirTrace and Open Trace

Format (OTF) tools could be transparently optimized at an

2 Ilsche, T. et al

intermediate file I/O aggregation layer, known as the I/O for-

warding layer. We integrated the I/O Forwarding Scalability

Layer (IOFSL) [4, 33] with the VampirTrace/OTF toolset.

Also, as part of contributions of this paper, we implemented

optimizations and new capabilities within IOFSL to reorga-

nize and optimize the captured VampirTrace/OTF I/O pat-

terns while preserving the independent I/O requirements of

these tracing tools. These new features include a distributed

atomic file append capability and a write buffering capabil-

ity. By taking advantage of the characteristics of the event

trace workload and augmenting our HPC I/O stack to bet-

ter support it, we have reduced the stress that the trace I/O

workload places on HPC storage systems. Furthermore, we

have reduced the impact of HPC I/O storage systems on the

tracing tools and thus the perturbation of the analyzed appli-

cation.

The work described in this paper led to a significant per-

formance and scalability improvement of the VampirTrace

and OTF software stack, enabling tracing of up to 5 times

more cores (bringing the maximum number of traced cores

from 40,000 to 200,000 on the system evaluated). The cor-

responding trace contained 941 billion events generated at

an aggregate rate of 13.3 billion events per second, validat-

ing our approach of coupling the Vampir toolset and IOFSL.

Overall, we have shown that the entire software stack in-

cluding trace generation, middleware, postprocessing, and

analysis can be utilized to analyze a parallel application con-

sisting of more than 200,000 processes, yielding a perfor-

mance analysis framework suitable for end users on large-

scale computing systems.

The remainder of this paper is organized as follows. The

general I/O requirements of performance analysis tools and

the Vampir toolset I/O needs are described in Section 2. An

overview of IOFSL and optimizations relevant to tracing is

provided in Section 3. Section 4 describes the integration of

I/O forwarding in the Vampir toolset and general scalability

improvements for trace recording and processing. The pro-

posed concepts are evaluated at scale, followed by an analy-

sis of the results in Section 5. An overview of related work

is given in Section 6. Conclusions and insights into future

work are summarized in Section 7.

2 The Vampir Toolset

The Vampir toolset is a sophisticated infrastructure for per-

formance analysis of parallel programs using combinations

of MPI, OpenMP, Pthreads, CUDA, and OpenCL. It con-

sists of the Vampir GUI for interactive post-mortem visual-

ization, the VampirServer for parallel analysis, the Vampir-

Trace instrumentation and runtime recording system, and

the Open Trace Format as the file format and access library.

The toolset relies on event trace recording, which allows

Fig. 1 The VampirTrace data flow.

the most detailed analysis of the parallel behavior of tar-

get applications. Figure 1 gives an overview of the data flow

through VampirTrace’s runtime infrastructure. In a first step,

the target application is instrumented by VampirTrace us-

ing various techniques. The VampirTrace runtime recording

layer collects the events generated by the instrumentation,

thereby striving to impose minimal perturbation. Triggered

by events of interest, this layer stores the event information

together with vital properties (precise time stamp, event-spe-

cific properties, performance metric values if configured) to

preallocated memory buffers. In order to avoid artificial syn-

chronization of target applications, these buffers are never

shared among processes and threads. The events of inter-

est include entry and exit of user-code subroutines, message

send and receive events, collective communication events,

shared-memory synchronization, and I/O events.

Depending on its type, a single Vampir event requires

approximately 10 to 50 bytes for its encoding in the buffer.

With event frequencies ranging from 100 to 100,000 events

per second (with proper settings), the amount of data for a

parallel run with 10,000 processes or threads for 10 min-

utes results in data sizes of 6 · 109 to 3 · 1013 bytes (ap-

prox. 5.6 GB to 27 TB1). In order to avoid severe applica-

tion distortion, the sum of the size of the buffers and the

memory required by the application should never exceed

the local main memory size. Typical buffer sizes range from

10 MB to 1 GB per process or thread, depending on the pro-

jected amount of generated trace data. This event trace data

is written to a set of OTF files from where it can be used for

1 In this paper, we use 1MB= 220B, 1GB= 230B, and 1TB= 240B.

Optimizing I/O Forwarding Techniques for Extreme-Scale Event Tracing 3

post-mortem investigation with the Vampir GUI. Tradition-

ally, VampirTrace and OTF use a file-per-thread I/O pattern

for storing data to minimize coordination among processes

and threads. Additional information about Vampir, Vampir-

Trace, and OTF is provided in our prior work [25].

2.1 I/O Patterns in VampirTrace

VampirTrace supports several strategies for writing buffers

to OTF files. The most general way is to flush and reuse

a buffer as soon as the measurement library cannot ensure

enough space for an event in the buffer. Therefore, the ap-

plication is delayed until the data is written out through the

OTF library. These buffer flush phases are clearly marked in

the trace so that their effect is not mistaken for stray behav-

ior of the target application. However, they can delay other

processes waiting for messages or synchronization in the ap-

plication, unless the buffer capacity is reached at the same

time in the application for all processes (i.e., each process

generated the same number of events). This becomes an is-

sue for larger-scale and tightly coupled applications.

Alternatively, VampirTrace can use collective MPI oper-

ations to trigger synchronized buffer flushes by piggyback-

ing work on application collective operations. For each col-

lective operation, the measurement environment communi-

cates the maximum buffer level. Once a threshold is reached,

all processes enter a flush phase. All synchronous flushes

and synchronizations are captured in the trace and clearly

marked for analysis. An additional barrier after the flush

makes sure the processes resume simultaneously, avoiding

an indirect impact on the application behavior. The global

collective operation is marked in the trace file to expose the

overhead introduced by the measurement.

Preferably, only a single flush at the end of the recording

is required (typically triggered by an MPI Finalize wrap-

per). This removes trace I/O from the application execution

but is only applicable as long as the event buffers are large

enough to hold all events generated during the application

execution. This can be achieved by reducing the total event

count, e.g., by using filters or tracing only specific iterations

of the application loops. In order to reduce the resulting file

size, transparent compression using zlib in the OTF layer is

applied to the written trace data. However, this is not applied

to the in-memory buffers to keep the perturbation during

trace recording minimal. If additional intermediate flushes

are required, the number of buffer flushes per process can be

limited in order to avoid uncontrolled use of storage space.

Therefore, the overall storage space required per process or

thread depends on the maximum number of flushes allowed,

the size of the memory buffer, and the compression factor of

the trace data.

General buffer flushes during MPI collective operations

help largely reduce the pertubation due to I/O as compared

to the general on-demand flushes. However, a collective op-

eration cannot be guaranteed to trigger a buffer flush before

the buffer capacity is exceeded as it depends on the num-

ber of tracing events recorded between two collective oper-

ations in the application and the buffer size. It is also diffi-

cult to choose appropriate settings that do not require buffer

flushes. Therefore, VampirTrace may need to fall back to the

general uncoordinated buffer flush that prevents loss of data

at the cost of a performance impact. Traditional collective

I/O optimizations and methods rely on implicit synchroniza-

tion, which is not appropriate for VampirTrace as it distorts

the measurement. Additionally, the support for dynamic pro-

cess and thread creation in VampirTrace makes it impossible

to predetermine the number of participants in collective I/O

operations at any time.

2.2 I/O Challenges and Solutions

The original configuration of VampirTrace imposed two I/O

challenges that prevented it from tracing applications run-

ning at full scale on large systems. First, the often simultane-

ous buffer flushes of many processes increase I/O bandwidth

pressure on the I/O subsystem. This pressure can delay trace

data storage and skew the application trace measurements.

The storage targets can get overwhelmed with inefficient,

nearly random workloads that can degrade their peak per-

formance by over 60 %. Second, the metadata load for this

configuration is high because of the creation of many in-

dividual files and the allocation of file system blocks for a

large number of I/O operations. According to David Dil-

low, an Advanced Systems Architect & Developer at the

Oak Ridge Leadership Computing Facility and co-chair of

the Open Scalable File Systems Technical Working Group,

ORNL’s JaguarPF is in principle capable of opening one file

per process even at the scale of 224,000 processes, taking

around 45 seconds (David Dillow, personal communication,

September 20, 2011). In production usage, however, such

operations have been observed to take five minutes [43]. Par-

allel file creation requests at a high rate will impact all other

users and jobs on the machine.

VampirTrace/OTF supports the use of node-local stor-

age for the intermediate trace I/O and copying the files from

local to global directories after the measurement. However,

node-local storage is not available on most current large-

scale systems. While research indicates that local storage

based on solid-state drives or hybrid solutions could allevi-

ate I/O bottlenecks on future systems [26], it is still unclear

when this will be widely available for large-scale systems.

Furthermore, in-memory file systems such as tmpfs [40] do

not require physical node-local storage but their usage can-

not be considered a solution for performance analysis since

it would lead to a significant reduction of memory available

4 Ilsche, T. et al

to the target application. The effect would be analogous to

massively increasing the size of trace buffers.

To address these challenges, we identified several oppor-

tunities that allow VampirTrace to store its trace data col-

lections more efficiently while minimizing the overhead of

the data accesses on the traced applications. First, we found

that a shared-file access pattern may be better suited for

large-scale applications than the file-per-thread access pat-

tern. This approach significantly reduces the metadata load

seen with the file-per-thread access pattern. Since writing

to a shared file from many processes requires coordination

among those processes, we opted to store trace data collec-

tions in multiple files, where the total number of files is far

less than the number of traced processes or threads. Sec-

ond, we identified an append-only streaming access pattern

for storing the trace data collection. Such a pattern is easier

for parallel file systems to handle than are random I/O pat-

terns. Third, we recognized that a write buffering strategy

can isolate the file system performance from the trace data

collection storage, which further reduces the impact of the

storage system on trace data collection.

The capabilities required by the improved VampirTrace

I/O access pattern are not readily available or adequately

supported by vendor-supplied I/O software stacks. The nec-

essary capabilities missing from these stacks include trans-

parent aggregation of uncoordinated I/O requests to a set of

files, portable atomic append of file data, and write buffer-

ing. These capabilities can be implemented within I/O for-

warding layers such as IOFSL. Our I/O forwarding approach

provides a convenient solution that integrates with the exist-

ing VampirTrace/OTF infrastructure and promises to scale

much farther than today’s high-end systems.

3 IOFSL I/O Forwarding Layer

The goal of I/O forwarding is to bridge computation and

storage components in large-scale systems. With this infras-

tructure, application file I/O requests are shipped to dedi-

cated resources that aggregate and execute the requests. This

approach enables I/O forwarding to bridge compute nodes,

networks, and storage systems that are not directly connect-

ed, such as on the IBM Blue Gene systems [45]. I/O for-

warding middleware aggregates file I/O requests from mul-

tiple distributed sources (I/O forwarding clients) to a smaller

number of I/O handlers (the I/O forwarding servers). The

I/O forwarding server delegates and executes the requests on

behalf of the clients, as shown in Figure 2. Since the I/O for-

warding layer has access to all the file I/O requests, one can

implement file I/O optimizations on both coordinated and

uncoordinated file access patterns. These optimizations in-

clude coalescing, merging, transforming, and buffering I/O

requests. Furthermore, the middleware can incorporate ex-

pert knowledge about the underlying file system, thereby

Fig. 2 The principle of I/O forwarding.

����������	

���
�����������������

��������������

������������	�

��������������������

����
�������

���������	
��

�������
���������������	
����������	���	����������
����������	���	����������
����������������

��������	�

�
���
����������

��

����������
��������������	�����������	
���!���	����������������
���������������������	�"��
#	������	��������

������������������	������

��

����	�����
����	�$������������"���
��	�����������%�����������
������#��	����������������

������

����		�	
��	�
������
���	���	�����������������	�
����������""����	�����������
����

������������������
������� !
	�

Fig. 3 Overview of the HPC I/O software stack.

providing an abstract interface for optimized I/O requests

and relieving the application from having to deal with file

system specific I/O optimizations.

The I/O forwarding layer is an ideal location to proto-

type and evaluate new or existing HPC I/O capabilities. Fig-

ure 3 illustrates a typical HPC software stack on large-scale

systems and where I/O forwarding fits into it. I/O forwarding

interacts directly with the parallel file system. Implement-

ing the enhancements we present in this paper required no

changes to vendor-supplied systems software; all our I/O en-

hancements were implemented in our I/O forwarding layer

IOFSL. Since IOFSL is positioned just above the file sys-

tem, our enhancements can affect all applications using the

I/O software stack.

3.1 IOFSL Architecture

IOFSL [4, 33] is a high-performance, portable I/O forward-

ing layer for extreme-scale computing systems. It consists

of two primary components: a set of IOFSL clients and a set

of IOFSL servers, communicating with each other over the

network.

The IOFSL client integrates with the compute-side I/O

stack and is responsible for initiating I/O requests with the

IOFSL server. An application can invoke the IOFSL client

Optimizing I/O Forwarding Techniques for Extreme-Scale Event Tracing 5

in several ways. IOFSL provides an implementation of the

stateless ZOIDFS API that applications can use to directly

communicate with IOFSL servers. The goal of the API is

to reduce the amount of state required per client in an ef-

fort to improve scalability and resilience, and to minimize

the number of individual API calls required to transfer com-

plex HPC data structures. ZOIDFS has been specifically de-

signed for HPC workloads and provides many useful fea-

tures, including portable (location-independent) file handles

and list I/O operations (i.e., the ability to operate on non-

contiguous file regions within a single operation). Compati-

bility layers for POSIX and MPI-IO are available that trans-

late standard I/O calls to ZOIDFS requests on the client side.

For codes that use MPI-IO, a ZOIDFS driver for ROMIO

is available. Codes using the POSIX file I/O API can use a

FUSE client or a sysio [1] client. Neither of these options re-

quires any modifications of existing POSIX I/O or MPI-IO

calls within user code.

The role of the IOFSL server is to delegate I/O requests.

Internally, the IOFSL server implements a number of opti-

mizations in order to achieve scalable and efficient file I/O

from many concurrent IOFSL clients. IOFSL implements

an event-driven architecture that is built on top of asynchro-

nous network, file, and computation resources. All client op-

erations are translated into state machines that use these re-

sources to execute application I/O requests.

IOFSL provides several drivers for interaction with com-

mon HPC file systems, e.g., POSIX-based (Lustre, GPFS,

etc), PVFS2 file systems [9] through a PVFS2 native driver,

and GridFTP servers [13]. When possible, these file sys-

tem drivers take advantage of tunable parameters provided

by the file systems, such as ioctls for tuning specific file or

file system configurations. The IOFSL server is configured

at initialization through a text-based configuration file that

provides the server with information about the runtime en-

vironment and the IOFSL capabilities to enable.

For communication between clients and servers, IOFSL

uses the Buffered Message Interface (BMI) library [8]. BMI

is a portable communication layer that was originally used

within the PVFS2 file system. It provides asynchronous, list

I/O interfaces for network data transfers. Internally, BMI

supports many common HPC networks using their native

APIs; to date, this list includes native access to the SeaStar2+

network used on the Cray XT platforms using the Portals

API, the IBM Blue Gene/P tree network using ZOID [22],

Myrinet Express (MX), InfiniBand, and TCP/IP. These net-

work-specific drivers allow IOFSL to take advantage of the

asynchronous, low-latency, and high-throughput character-

istics of common HPC networks through an abstract and

portable interface.

3.2 I/O Forwarding Optimizations

In Section 2.2, we identified several I/O optimizations that

can improve the performance and scalability of the trace data

generation of VampirTrace. These improvements include a

write buffering strategy to quickly offload trace data from

the application compute nodes and an atomic file append ca-

pability to reduce random I/O workloads to the file system.

In this section, we describe how we implemented these ca-

pabilities in IOFSL. Figure 4 provides an overview of both

capabilities when writing to a single trace file.

Fig. 4 IOFSL with nonblocking I/O and the atomic append feature for

an Nx1 I/O pattern.

The IOFSL write buffering capability extends the IOFSL

server and client with nonblocking file I/O enhancements.

This capability transforms blocking I/O operations into non-

blocking ones while requiring minimal changes to the ap-

plication and no changes to the ZOIDFS API. It relaxes

the data consistency semantics in order to achieve higher

I/O throughputs for the application. To implement this, we

modified the file write data path in the IOFSL server to sig-

nal operation completion to the client before initiating the

file write operation on the server. Once the I/O forward-

ing server receives the client data for a nonblocking oper-

ation, the data is buffered within the server, and the client

I/O operation is completed. The client is then free to release

or reuse its transmitted data buffer since the server is now

responsible for completing the I/O operation for the client.

The I/O request will complete as soon as the server has re-

sources to process the request or when the client forces all

pending nonblocking I/O operations to complete by using a

commit operation. This behavior allows the IOFSL server to

transparently manage nonblocking I/O operations initiated

by clients.

The atomic append capability of IOFSL allows multi-

ple clients to share the same output file without client-side

6 Ilsche, T. et al

coordination and supports tools that exhibit loglike data ac-

cess patterns. This file append capability is a distributed and

atomic I/O operation. We developed several new IOFSL fea-

tures to support distributed atomic file appends. IOFSL serv-

ers now provide a distributed hash table that is used to track

the end-of-file offset for unique files. This data structure pro-

vides an atomic fetch-and-update operation. The distributed

storage of file handles allows IOFSL to scatter and decen-

tralize the file offset data. We also developed a mechanism

for IOFSL servers to communicate with each other. Origi-

nally, IOFSL provided a client-server communication model

only. The server-to-server communication capability allows

IOFSL servers to query remote IOFSL servers and retrieve

the end-of-file offset information. Consequently, the clients

are not required to contact multiple IOFSL servers in or-

der to obtain and update file offset information. Addition-

ally, the IOFSL server coalesces multiple atomic append re-

quests in order to limit the amount of server-to-server traffic.

The atomic append capability can be used by any number of

IOFSL servers, including a local server mode when data files

are not shared between IOFSL servers and thus neither are

end-of-file offsets.

Our atomic append approach has several benefits. Clients

can append data to a file that is simultaneously being writ-

ten to by other clients and I/O forwarding servers. IOFSL

clients do not require prior knowledge of the end-of-file po-

sition and simply need to deliver to the server the data to

be written into the file. This capability effectively allows ap-

plications to stream data to the IOFSL servers, which man-

age data placement within a file. The server returns to the

client the file offset where the data will be written. This

capability is similar to the O APPEND mode provided by

the POSIX I/O API. The novelty of our approach is in the

support of a distributed and portable append functionality:

O APPEND does not work in a multinode environment like

a parallel computing system. Since this capability is imple-

mented within IOFSL, it can be used on any system where

IOFSL can run, regardless of the underlying file system, op-

erating system, or network.

4 I/O and Scalability Improvements in the Vampir

Toolset

The Vampir toolset has been improved in order to enable

extreme-scale tracing. This work can be divided into two

categories. First, since I/O was identified as a primary limit-

ing factor, IOFSL support was integrated into trace record-

ing. Second, some more general scalability improvements

were implemented to address bottlenecks identified after the

improved I/O scheme allowed the trace collection to scale

beyond previous limits.

Fig. 5 I/O aggregation provided by IOFSL for VampirTrace / OTF.

One forwarding server serves multiple clients; usually many servers

are used to provide high capacity.

4.1 Integration of OTF and IOFSL

The OTF layer provides a single integration point between

the VampirTrace stack and IOFSL. Since all trace I/O hap-

pens in this layer, it permits a portable solution that is usable

for other applications based on OTF. We chose to use the

ZOIDFS API because it provides additional capabilities that

are not present in the IOFSL POSIX translation layers.

The primary integration goal was the reduction of the

number of files generated by the Vampir tracing infrastruc-

ture. Instead of storing n OTF event streams in n files, the

streams are now aggregated into m files, where m ≪ n; m

can vary based on the tracing configuration. For example,

m could be equal to the number of IOFSL servers (one file

per IOFSL server) or be smaller (files shared between the

servers). Figure 5 illustrates the file aggregation and inte-

gration of the used software layers.

To accomplish this integration, all OTF write operations

use the ZOIDFS atomic-append feature of IOFSL. This al-

lows arbitrary subsets of event trace streams to share the

same file without any coordination on the OTF side. IOFSL

ensures that blocks from the same source stay in their origi-

nal order but makes no guarantees with respect to global or-

dering, which enables additional optimizations by the server.

The coordination of the blocks and their positions in the

shared file is managed by IOFSL, which reports the result

of this activity to OTF where it is stored in memory individ-

ually for every OTF stream2. As a final step, OTF writes a

list of blocks and their file positions together with the iden-

tifier of the stream those blocks belong to. This is sufficient

to later extract all blocks of a stream in correct order during

reading. The mapping is stored in a shared index file, which

is also written via IOFSL using the atomic append capabili-

2 An OTF stream abstracts the events from a single process or

thread.

Optimizing I/O Forwarding Techniques for Extreme-Scale Event Tracing 7

Fig. 6 Sequence diagram of a flush that utilizes the buffered I/O capa-

bility of IOFSL. Vertical axis is time, increasing downward, not true to

scale.

ties. The trace data files and index files can be read with or

without the use of IOFSL.

The traditional OTF write scheme uses synchronous I/O

calls to ensure that all I/O activities happen during the buffer

flush phases, which are explicitly marked in the trace. While

the flush phases are blocking and event trace buffers are

reused, there can still be buffering by the operating system,

the standard library, or the file system itself, which cannot

be eliminated easily by the tracing infrastructure. However,

other optimizations that just hide the transfer time can neg-

atively affect the application when resources such as I/O

bandwidth are used after the flush.

In contrast, IOFSL’s write buffering capabilities can de-

crease the time spent in buffer flushes without affecting the

application. Unlike local optimizations, the trace data will

have been transferred from the application node to the I/O

forwarding node by the time the flush completes. The file

I/O is then initiated on the forwarding node and no local re-

sources are used after that, thus minimizing the application

perturbation. The effects are similar to other jobs utilizing

the shared network and I/O subsystem. In cases where this

is undesirable – for example, if the target application’s I/O

is the subject of the analysis or if the machine’s I/O network

is not separate from the communication network – the non-

blocking I/O capability may not be appropriate and can be

disabled. Figure 6 displays the interaction between applica-

tion, trace library, IOFSL, and the file system in a sequence

diagram.

4.2 Scalability Improvements for VampirTrace

In addition to the improvements necessary to efficiently write

the trace output, a number of other optimizations were per-

formed to address scalability bottlenecks within the Vam-

pir toolset. Trace postprocessing with vtunify was previ-

ously parallelized by using OpenMP and MPI. The mas-

ter vtunify process serves as a global instance to unify

the trace definitions (metadata about processes, functions,

etc). In order to enable the handling of even larger traces,

the serial workload in the master process has been signif-

icantly reduced. The remaining serial workload was opti-

mized in time complexity with respect to the total number

of application processes. A merge option was implemented

in vtunify that causes each unification worker to only write

a single output file instead of one output file per processed

stream. This can help avoiding the metadata issues caused

by the creation of too many files while it still generates OTF

files that are compatible with legacy OTF applications. With

these improvements, trace postprocessing became feasible

for large scales, as is documented in Section 5. A hierarchi-

cal unification scheme for definitions could further improve

the scalability and eliminate the master process as a bottle-

neck.

As described in Section 2.1, a synchronized buffer flush

is beneficial for large-scale tracing scenarios. The therefore

required threshold check is implemented in terms of inject-

ing a call to MPI Allreduce into each global collective op-

eration. At large scales, this can result in more significant

overhead because the MPI Allreduce operation is partic-

ularly prone to high variability caused by operating system

noise [24]. In order to reduce the total overhead, a configura-

tion option has been introduced that specifies that the thresh-

old of the buffers should be checked only every nth collec-

tive operation. This mitigates the overhead while still be-

ing able to reliably trigger collective synchronized flushes.

The additional time used by the measurement library for the

threshold check is still marked in the generated trace.

A further enhancement was the improvement of OTF’s

zlib compression capability. During the OTF and IOFSL in-

tegration, the compression capability was updated to ensure

that full compression output buffers were written to the file

system. This modification ensured that most OTF writes have

a fixed size and are stripe aligned, presenting a more efficient

pattern to file systems. Unaligned OTF accesses can now

only occur at the end of the application’s execution when the

remaining contents of the compression buffer are flushed to

the file system.

VampirTrace and the IOFSL integration presented in this

paper were designed and tested with hybrid applications that

use MPI in combination with OpenMP, threads, CUDA, or

other node-local parallel paradigms. No restriction is im-

posed on when new threads can be created or when buffer

flushes may happen.

5 Evaluation and Analysis

JaguarPF [6] is a 2.3 petaflop Cray XT5 large-scale HPC

system deployed at the Oak Ridge Leadership Computing

Facility (OLCF) at Oak Ridge National Laboratory (ORNL).

Data storage is provided by a Lustre-based centerwide file

system [39].

8 Ilsche, T. et al

Fig. 7 Deployment of application processes and IOFSL servers on

JaguarPF.

User-level access to I/O nodes or Lustre router nodes,

which would be optimal locations for the deployment of

IOFSL servers, is not possible on JaguarPF due to adminis-

trative policies. Therefore, additional compute nodes are al-

located with each application launch and the IOFSL servers

are spawned on these extra nodes, through which all appli-

cation I/O requests are proxied. Figure 7 illustrates this de-

ployment strategy. On JaguarPF, the BMI Portals driver is

used to leverage the performance of the XT5 SeaStar 2+ in-

terconnect.

5.1 IOFSL Performance on JaguarPF

For a general understanding of I/O performance on JaguarPF,

we ran a series of experiments using the IOR benchmark [21]

that measures the write throughput of bulk data transfers

(4 MB). The results of these experiments are illustrated in

Figures 8, 9, and 10. In these experiments, the native ver-

sion used IOR’s MPI-IO driver while the IOFSL tests em-

ployed a custom IOFSL driver that uses the ZOIDFS API.

The results illustrated in Figure 8 depict the expected per-

formance of IOFSL when increasing the number of servers

in a shared-file I/O pattern. In general, IOFSL matches the

observed native performance when using MPI-IO. The re-

sults in Figure 9 depict the performance of IOFSL when

the number of IOFSL servers is limited to at most 160 and

the number of clients to each IOFSL server varies when us-

Fig. 8 IOR performance on JaguarPF using a shared-file I/O pattern

with MPI-IO and IOFSL. In this experiment we kept the ratio of IOFSL

clients to servers constant (12 clients for every server).

Fig. 9 IOR performance on JaguarPF using a shared-file I/O pattern

with MPI-IO and IOFSL. In this experiment we kept the ratio of IOFSL

client nodes to server nodes constant (indicated in the legend) up to a

maximum of 160 IOFSL servers.

ing a shared-file I/O pattern. We observe that IOFSL out-

performs the native case at larger scales. We have identi-

fied two reasons for this improvement: the number of writ-

ers (IOFSL servers) is limited, and the I/O pattern and lay-

out mitigated lock contention when forwarded through the

IOFSL servers. The event-driven architecture of the IOFSL

servers allows each server at the larger-scale experiments to

accommodate 1,200 clients while providing roughly a total

of 11 GB/s write throughput. The results illustrated in Fig-

ure 10 highlight the performance of IOFSL when using a

file-per-process I/O pattern. IOFSL performance follows the

general pattern observed in the native use case.

With the default IOFSL configuration (unbuffered I/O

mode) and the IOR benchmark on JaguarPF when the sys-

tem was in normal operation, 10.8 GB/s to 11.5 GB/s aggre-

gate sustained bandwidth was observed when writing to a

single shared file for 1,920 to 192,000 IOFSL clients and

when using at most 160 IOFSL servers. Furthermore, an ag-

gregate sustained bandwidth of 17.9 GB/s for 2,880 clients,

Optimizing I/O Forwarding Techniques for Extreme-Scale Event Tracing 9

Fig. 10 IOR performance on JaguarPF using a file-per-process I/O pat-

tern with MPI-IO and IOFSL. In this experiment we kept the ratio of

IOFSL client nodes to server nodes constant.

Fig. 11 IOFSL write buffering performance on Cray XT5 system

(OLCF’s JaguarPF). For this experiment, we used a single IOFSL

server, 12 to 324 IOFSL clients, and 4 MB to 64 MB of data per IOFSL

client.

39.2 GB/s for 5,760 clients, and 42.5 GB/s for 11,520 clients

was when observed using 60 IOFSL clients per IOFSL server

and when writing to unique files (one file per process).

To better understand the performance of IOFSL’s new

write buffering capability when compared with the original

IOFSL synchronous write behavior, we measured the per-

formance of the new capability using a modified version of

the IOR benchmark that invoked write buffering operations.

These experiments focused on identifying the I/O through-

put observed by the application, and the results ignore the

cost of application-initiated flushes. Figure 11 illustrates the

performance on JaguarPF. This data clearly indicates that

IOFSL can significantly accelerate the sustained storage sys-

tem bandwidth perceived by the application when sufficient

buffer space is available at the IOFSL server. The drop in

performance at the bottom right corner of this figure occurs

when the IOFSL server exceeds its write buffer space and

blocks any additional buffered I/O operations until buffer

space becomes available. Therefore, the usefulness of this

capability is constrained by the size of write buffer available

to an IOFSL server, the frequency of write buffering oper-

ations initiated by IOFSL clients, and the sustained band-

width the IOFSL server can realize when transferring the

buffered data to the storage system.

5.2 Recording traces of S3D with VampirTrace

To demonstrate tracing at large scale, we instrumented the

petascale application S3D with VampirTrace. S3D is a par-

allel direct numerical simulation code developed at Sandia

National Laboratories [11]. We used a problem set that scales

to the full JaguarPF system. It uses weak scaling to allow a

wide range of process counts, from 768 to 200,448. The pro-

cesses are single-threaded, and we ran one process per core.

In its role as an early petascale code, S3D is well understood

and has been analyzed with TAU and Vampir at smaller

scales [23]. The purpose of our experiment was to investi-

gate the scaling of trace recording rather than an analysis

of the application. S3D provides a real-world instrumenta-

tion target for the measurement environment. In addition,

the large number of MPI messages generated by S3D creates

a high frequency of events (approximately 7,700 events per

second per process). Complete information about all mes-

sages is essential for the analysis of parallel applications, so

these events should not be filtered. This provides a challeng-

ing workload for the measurement environment. We have

traced 60 application time steps during our experiments us-

ing a basic online function filter. Further improvements of

the instrumentation, such as selective function instrumen-

tation or manually tracing a limited number of time steps,

were deliberately not applied in order to keep the workload

for the measurement environment high. Showing that the

measurement environment handles this workload well sug-

gests that it will also work for applications with lower num-

ber of MPI messages or more specific instrumentation. The

synchronous flush feature in VampirTrace was used with a

total of three flushes during the application execution in ad-

dition to the final flush during the application shutdown.

Prior to our successful demonstration, the largest scale

trace for VampirTrace was approximately 40,000 processes

using POSIX I/O. In practice, achieving this level of par-

allelism is already difficult because of substantial overhead

during file generation and the impact on other users of the

file system.

In our demonstration we utilized the full stack that is in-

volved in trace generation: application (S3D), VampirTrace,

OTF, IOFSL, the BMI Portals driver for network transfers,

and Lustre as a target file system. We have conducted multi-

ple experiments tracing up to 200,448 application processes

10 Ilsche, T. et al

running S3D and using a set of 672 I/O forwarding nodes

resulting in 2,688 files. The largest generated trace size was

4.2 TB of compressed data containing 941 billion events.

The total time spent on trace I/O, including connection setup

to the forwarding server, file creation, open, sync, and close,

was 71 seconds with write buffering I/O, for a total applica-

tion run time of 22 minutes. Trace I/O was synchronized

among the MPI processes so this time includes the time

spent in barriers waiting for other processes to complete

their I/O operations. It therefore represents the total exten-

sion of application run time due to trace I/O. On average it

took 5.5 seconds for each process to establish the connec-

tion to the forwarding server and to open the four shared

output files (definitions file and events file, plus an index file

for each). For some processes the connection setup took up

to 32 seconds because of the massive stress on I/O forward-

ing nodes resulting from write operations from other pro-

cesses. The intermediate buffer flushes are not affected by

connection initialization, file open times, and final commit

and therefore show significantly improved individual perfor-

mance. With write buffering enabled, aggregated write rates

of up to 154 GB/s or 33.5 billion events per second were ob-

served, as recorded by the tracing measurement environment

during individual flushes. We observed this high bandwidth

because all trace data fit into the IOFSL servers’ buffers. The

time for the client to flush this data was limited by the IOFSL

server performance. This bandwidth result also includes the

synchronization of all processes as well as the overhead of

OTF and trace data compression.

For comparison, we ran a full-size experiment using the

IOFSL enhancements and unbuffered I/O. The total trace

I/O time was 122 seconds, yielding a sustained aggregate

bandwidth of 35.3 GB/s. This further indicates that write

buffering reduces the I/O overhead observed by the trac-

ing infrastructure. The IOFSL capability buffers trace data

at the IOFSL server and overlaps application tracing with

trace data storage. In this test series, the trace size per pro-

cess remains almost constant.

The postprocessing (vtunify) for such a trace requires

approximately 27 minutes but only a fraction of the resources

of the application (10,752 workers). This is a required step,

regardless of the use of IOFSL. However, IOFSL was not

used because only 10,754 files3 are created in this process.

This demonstration shows that full-size trace recording

on large-scale systems can be done with a well-manageable

overhead, even with trace I/O phases during the application

execution. We investigated the scaling behavior of our solu-

tion with a series of experiments in different configurations.

Figure 12 shows the total application run times at different

scales with and without tracing. While the overhead of both

trace I/O and tracing in general increases with the number

of processors, it remains below 15% even at full scale.

3 10,752 event files, one definitions file, and one control file.

�����������������������������������	����������������
�		������������������		�
���������������		��
������������		�����
�

	

�		

�		

�		

�		

�			

��		

��		

���
����������

���
�������������������
�����

�����
�������

���������� ��
�!!�!

"
��
�
��
!
�

�
�
�
!
�

Fig. 12 Run times of S3D with and without tracing for different pro-

cess counts: (a) average of 11 experiments, (b) average of 7 experi-

ments, (c) single test run during dedicated reservation.

������� ���	���� �
�		���� ���		��
� ����		��
� �		�����
�

	

�	

�	

�	

�	

�		

��	

�����

���������

�������������
� �

!
"�

�
��

�

�
#
$

�

�"#���%

Fig. 13 Total trace I/O times for different process counts: (a) average

of 11 experiments with min/max, (b) average of 7 experiments with

min/max, (c) single test run during exclusive system reservation; no

POSIX I/O data for 129600, 200448.

A comparison with POSIX I/O at different scales is pre-

sented in Figures 13 and 14. The POSIX I/O experiment

with 86,400 processes was conducted during a dedicated

system reservation. To avoid any potential impact to file sys-

tem stability, we did not scale the POSIX I/O tests further.

For all tests, the same software versions were used; hence,

POSIX I/O tests also benefit from the improvements de-

scribed in Section 4.2 that are not directly related to IOFSL.

The POSIX I/O event rate is limited by the rate of file cre-

ation. This limitation is removed by utilizing IOFSL and al-

lows to saturate the I/O bandwidth of the forwarding servers

for 40k to 200k client processes. The impact of file creation

depends on total time, which in turn depends on trace size

per process; it will be even more dominant with lower num-

bers of events.

The experiments with lower process counts were run at

different times during production use of the system. I/O in a

shared system is always prone to variability, especially with

a single metadata server being the bottleneck for any file

metadata operation.

Optimizing I/O Forwarding Techniques for Extreme-Scale Event Tracing 11

Fig. 15 Screenshot of Vampir visualizing a trace of the S3D application using 200,448 processes on JaguarPF. User functions are shown in green,

MPI operations in red, and activities of the measurement environment in yellow (file open), light blue (trace I/O), and dark blue (synchronization).

������� ���	���� �
�		���� ���		��
� ����		��
� �		�����
�

	

�

�

�

�

�	

��

��

�����

���������

�������������
� �

!
"
�
#
$
��
�
��

�

�
#
%

&
'(
('
�
#

Fig. 14 Aggregate event write rates for different process counts. Av-

erages used as in Figure 12. The data includes the overheads of estab-

lishing the connection, file open, synchronization, commit, and close.

The trace files generated with IOFSL were validated by

using the post-mortem analysis tool Vampir. Vampir was

able to read valid trace files and display detailed graphics

of measured events versus a timeline and various other dis-

plays. Figure 15 shows a trace of S3D with 200,448 pro-

cesses opened in Vampir, using 21,516 processes for inter-

active visualization. All processes are visible in an overview

showing user functions in green, MPI operations in red, and

phases in which the application was suspended by the mea-

surement environment in blue. In addition, file open oper-

ations in the first flush are presented in yellow, followed

by the actual trace I/O colored light blue as in subsequent

flushes. Dark blue represents synchronization phases at the

end of each flush. The three flushes take place around 360 s,

580 s, and 790 s of program run time. While being clearly

visible, they are acceptably short in relation to the overall

run time of the application. The figure also shows Vampir-

Trace’s internal time synchronizations that extend the first

and the last synchronization phase after 100 s and 800 s. This

total overview serves as a starting point to further investigate

the details by zooming into both the time and process axes.

At such large scales, visualization for analysis purposes

becomes more challenging as the ratio between available

pixels and displayed processes decreases. Vampir’s ability

to smoothly zoom and scroll into both the process and time

dimension helps navigation even in such large traces. How-

ever, new ways to highlight performance anomalies are re-

quired to help the user at those scales find the right spots to

focus at. These topics are the subject of ongoing research;

our solution lays a foundation for a comprehensive analysis

at full scale by providing a feasible way to store event trace

data.

5.3 Portability to Other Systems

We have also evaluated the integrated IOFSL and Vampir

toolset on the Intrepid IBM Blue Gene/P (BG/P) large-scale

computing system that is deployed at the Argonne Leader-

ship Computing Facility (ALCF). The purpose of this eval-

uation was to demonstrate the portability of our solution

to other large-scale computing platforms, runtime environ-

ments, storage systems, and applications.

Intrepid is a 557 teraflop IBM BG/P, consisting of 40,960

compute nodes and 640 I/O nodes. I/O nodes communicate

via 10 Gigabit Ethernet with one another and with Intrepid’s

two high-performance storage systems: a 3 PB GPFS file

system and a 512 TB PVFS file system. Intrepid’s system

12 Ilsche, T. et al

administration policies permit users to customize the run-

time environment of the system. For our evaluation of IOFSL

and VampirTrace/OTF, these policies allowed us to deploy

the IOFSL servers on the I/O nodes. We had to replace IBM’s

ciod I/O forwarding software with the ZOID [22] BG/P tree

network driver in order to facilitate high-throughput and low-

latency communication between user-space processes on the

compute and I/O nodes, and boot the ZeptoOS [44] operat-

ing system on the BG/P compute nodes (replacing IBM’s

CNK). Additional information on the deployment of IOFSL

on BG/P systems is provided in our prior work [33].

We successfully traced the Radix-k [36] image composit-

ing algorithm on Intrepid at a variety of scales using the in-

tegrated IOFSL and VampirTrace/OTF toolset. Aside from

small adjustments to the infrastructure deployment, the soft-

ware stack required no additional changes to run on the sys-

tem. Our experience on Intrepid demonstrates that we can

trace additional applications, run our toolsets in different

runtime environments and systems, and interact with dif-

ferent storage systems. Since our initial target platform was

JaguarPF, assessing the performance and scalability of these

tools on IBM BG/P systems is a work in progress.

6 Related Work

An early version of this work was presented at HPDC 2012

[20]. Major improvements in this extended version include

an in-depth discussion of the architecture of IOFSL (Sec-

tion 3) and new, extensive measurements of “raw” perfor-

mance of IOFSL on JaguarPF (Section 5.1) to provide a con-

text for subsequent results with VampirTrace; furthermore,

the paper has been extened with a comparison to other es-

tablished tracing frameworks and a discussion of new de-

velopments in standard IO APIs, specifically pNFS and the

recently ratified MPI version 3.0, and how these might affect

the work described in this paper (Section 6).

The performance analysis toolset Scalasca faced prob-

lems similar to ours when handling large numbers of trace

files. Recently, the scalability of Scalasca was improved up

to 300,000 cores [43]. For tests on a large IBM BG/P sys-

tem, the SIONlib library was used. It uses a special multifile

format that contains additional metadata managing chunks

of data from different processes within one file [15]. With

SIONlib, multifile creation is a collective operation. This

would pose a significant limitation to VampirTrace with re-

spect to the dynamic threading model.

Instead of relying on function call instrumentation like

VampirTrace, HPCToolkit employs a sampling strategy to

generate call path profiles and traces [3]. While this reduces

the amount of data generated and allows a rough estima-

tion of the required storage space, it comes with its own

sampling-related problems, for example, a loss of details for

very short events. For storing the trace information, HPC-

Toolkit also requires using at least one file per process. While

this requirement does not constitute a problem for the maxi-

mum reported 8,184 core executions [41], it will inevitably

lead to similar problems for larger scales.

The TAU framework focuses on profiling, which pro-

duces only a fraction of the amount of data seen in tracing

applications [38]. However, since TAU creates at least one

file per process for storing the profiling data, it is also prone

to the scalability issues related to metadata operations dur-

ing the creation of files.

The POSIX I/O standard was designed before the advent

of wide-scale parallelism. Hence, it suffers from many fun-

damental characteristics that preclude it from scenarios such

as multiple writers updating the same file – a common need

for parallel I/O oriented activity [19].

New I/O research efforts within standards-oriented ac-

tivities have recognized this fact and are actively working

on APIs appropriate for extreme-scale parallelism [19, 35].

One such API is pNFS [18], an extension to NFSv4 designed

to overcome NFS scalability and performance barriers. Like

IOFSL, it is based on a stateless protocol. However, it does

not provide the “n-to-m” client to forwarding-server archi-

tecture fundamental to our design and is unable to coalesce

independent accesses to improve performance. We plan to

incorporate a direct connection from IOFSL to pNFS as an

alternative lower layer for platforms using pNFS for I/O ac-

cesses.

MPI-IO [28] provides a more sophisticated I/O abstrac-

tion than does POSIX. It includes collective operations and

file views, which enable coordinated and concurrent access

without locking [12]. It does not directly provide an “n-

to-m” mapping from clients to output files. It does support

distributed atomic append operations. For this capability to

work, however, all processes that want to append must open

the file using a collective, synchronizing operation, intro-

ducing unnatural synchronization into the application being

traced.

In addition, the shared file pointer operations used to im-

plement distributed atomic append functionality do not re-

turn the offset at which data has been written – information

required to efficiently build OTF indices. MPI does offer a

method to query the position of the shared file pointer; but as

pointed out by Chaarawi et al. [10], doing so in the presence

of concurrent updates creates a race condition. In order to re-

solve this race condition, a synchronizing collective would

have to be used, making buffer flushes effectively collective.

While MPI-IO also supports asynchronous write oper-

ations, these differ from the write-buffering capability in

IOFSL in that the operation returns before the data has been

transferred off the node. Instead, the transfer continues in

the background. Since this would perturb the application,

this functionality cannot be used for event tracing.

Optimizing I/O Forwarding Techniques for Extreme-Scale Event Tracing 13

The version 3 of the MPI standard (which includes MPI-

IO) was recently released. Unfortunately, the updates to MPI-

IO are mainly limited to the introduction of nonblocking col-

lective I/O operations, leaving the issues highlighted in this

section unresolved.

The I/O Delegate Cache System (IODC) [32] is a caching

mechanism for MPI-IO that resolves cache coherence issues

and alleviates the lock contention of I/O servers. IOFSL of-

fers similar capabilities but is positioned below MPI-IO in

the I/O software stack, providing a dedicated abstract device

driver enabling unmodified applications to take full advan-

tage of its optimizations.

The I/O forwarding concept was introduced in the San-

dia Cplant project [34], which used a forwarding framework

based on an extended NFS protocol. IOFSL extends the tar-

get environment imagined by Cplant to much larger scales

and higher performance through a more sophisticated proto-

col permitting additional optimizations.

DataStager [2] and Decoupled and Asynchronous Re-

mote Transfers (DART) [14] achieve high-performance trans-

fers on Cray XT5 using dedicated data-staging nodes. Un-

like our approach, which is transparent to the applications

that use POSIX and MPI-IO interfaces, DART requires ap-

plications to use a custom API.

Similarly, Adaptable I/O System (ADIOS) [27] provides

performance improvements through strategies such as pre-

fetch and write-behind, based on application-specific con-

figuration files read at startup; this information also helps

ADIOS minimize the memory footprint during the course

of the application run. In contrast, our approach requires no

knowledge of the application behavior in advance and is sit-

uated at a lower level in the I/O software stack.

PLFS [5] is a file system translation layer developed for

HPC environments to alleviate scaling problems associated

with large numbers of clients writing to a single file. Like

our solution, it interposes middleware between the client ap-

plication and the underlying file system through the use of

FUSE. The solution, aimed at checkpointing and similar ac-

tivities for architectures such as Los Alamos National Lab-

oratory’s Roadrunner (3,060 nodes), transparently creates

a container structure consisting of subdirectories for each

writer as well as index information and other metadata for

each corresponding data file. Since our solution is focused

on supporting hundreds of thousands of clients or more, we

have chosen to aggregate I/O operations in the middleware,

thus resulting in fewer metadata operations in the underly-

ing parallel file system. Furthermore, our IOFSL-based so-

lution focuses on transforming uncoordinated file accesses

to many unique files, such as a file-per-process I/O pattern,

into a shared-file per group of processes I/O pattern. Our

solution reduces file system resource contention generated

by shared-file access patterns (such as file stripe lock con-

tention or false sharing) and eliminates file system metadata

overheads generated by I/O patterns with one file per process

(such as frequent file creation or attribute access operations)

at extreme scales.

IOFSL work extends the earlier ZOID efforts [22]. ZOID

is a Blue Gene-specific function call forwarding infrastruc-

ture that is part of the ZeptoOS project. The I/O forwarding

protocol used by IOFSL was first prototyped in ZeptoOS.

IOFSL is a mature, portable implementation that integrates

with common HPC file systems and also works on the Cray

XT series and Linux clusters.

While recent work has addressed the use of nonblocking

I/O at the I/O forwarding layer [42], our work focuses on

providing a portable and transparent-to-applications, write-

buffering-based, and high-performance nonblocking I/O ca-

pability in HPC environments. Furthermore, nonblocking file

I/O capabilities are not provided by existing I/O forwarding

solutions, including IBM’s ciod or Cray’s DVS.

In information technology in general, big data is a major

new research topic. Technologies such as Apache Hadoop

allow users to handle dozens of petabyes of data [7]. The

challenge of big data is adjacent to HPC; however, scien-

tific data is often tightly coupled and structured. Similarly

to what we have proposed, big data uses augmentations to

existing I/O software that take advantage of specific work-

load characteristics and have been shown effective in im-

proving performance for important workloads. For example,

the Google File System provides specialized append opera-

tions that allow many tasks to contribute to an output file in

an uncoordinated manner [16].

7 Conclusions and Future Work

In this paper we have addressed the challenge of massively

parallel I/O operations by utilizing I/O forwarding middle-

ware. Tests on a large-scale system show that aggregated

performance for a high number of parallel write operations

can be improved by using I/O forwarding, when compared

to MPI-IO. The I/O forwarding middleware IOFSL also pro-

vides a new atomic append capability that is the key to ag-

gregating uncoordinated parallel data writes. Through an in-

tegration of IOFSL into the OTF library, the Vampir per-

formance analysis toolset benefits from this capability. Ad-

ditional improvements of performance result from utilizing

write buffering, which, thanks to being implemented on sep-

arate I/O forwarding nodes, does not perturb the application

processes.

In conclusion, it is now feasible to trace performance

data of full-size application runs on large-scale systems (over

200,000 processes). Further scalability improvements of the

Vampir toolset leverage the entire performance analysis work-

flow, including post-processing and visualization, for these

large application traces.

14 Ilsche, T. et al

While these results show, that I/O is no longer a severe

bottleneck, there are still further lines of inquiry to be con-

sidered. Ongoing work investigates advanced filtering, se-

lective tracing, and semantic runtime compression to pro-

vide additional benefits for tracing large application runs.

We show that even at medium scales, tracing overhead can

be significantly reduced with our solution. The benefit for

scalability results from reducing the massive amount of meta-

data file system requests from all application processes to a

much lower number.

We will pursue more advanced aggregate memory foot-

print optimizations to yield more available memory to user

applications. While we have addressed the data collection

challenges and presented a solution to this problem, we do

not address how to effectively visualize trace data for appli-

cations running at extreme scales. This information visual-

ization challenge will be addressed as our work progresses.

We plan to couple the data collection tools and techniques

presented in this paper with recent MPI and I/O visualiza-

tion tools that focus on extreme-scale event and trace data

collections [29, 30].

The capabilities described in this paper are also appli-

cable to other use cases beyond improving VampirTrace’s

I/O and can be implemented within other I/O forwarding

tools. The new IOFSL capabilities can be used to improve

the I/O performance of tools that generate per-process logs.

Thus, these capabilities are applicable to massively parallel

applications that exhibit loglike data storage patterns (such

as Qbox’s [17] shared file pointer object capability), data-

intensive stream-processing tools (such as LOFAR’s real-

time signal-processing pipeline [37]), and high-level I/O li-

braries that allow unlimited dimensionality or enlargement

of variable data structures (such as chunked data storage in

HDF5 [31]). While we limited our demonstration of these

capabilities to IOFSL, they are sufficiently generic and can

be implemented in other production-quality I/O forwarding

layers, such as IBM’s ciod and Cray’s DVS. If these capa-

bilities are implemented in these production tools, they can

substantially improve the HPC community’s ability to un-

derstand applications running on large-scale systems.

Since the experiments were conducted, the OLCF and

ALCF have upgraded their large-scale HPC computing re-

sources. The new Titan Cray XK6 supercomputer at OLCF

consists of 299,008 CPU cores and 18,688 GPUs; Mira, an

786,432 CPU core IBM Blue Gene/Q system, is now the

leading system at ALCF. Both centers also upgraded the

storage systems that serve their large-scale computing re-

sources. While we are confident that our toolsets will scale

on these systems, we will re-evaluate the scalability and per-

formance of our tools on these new platforms as they are de-

ployed. Moreover, we plan to further investigate the IOFSL

and OTF/VampirTrace configuration space on these systems

so that we can identify optimal infrastructure configurations

for performance analysis I/O workloads.

Acknowledgements We thank Ramanan Sankaran (ORNL) for pro-

viding a working version of S3D as well as a benchmark problem set

for JaguarPF. We are grateful to Matthias Jurenz for his assistance on

VampirTrace as well as Matthias Weber and Ronald Geisler for their

support for Vampir. The IOFSL project is supported by the DOE Of-

fice of Science and National Nuclear Security Administration (NNSA).

This research used resources of the Argonne Leadership Computing

Facility at Argonne National Laboratory and the Oak Ridge Leadership

Computing Facility at Oak Ridge National Laboratory, which are sup-

ported by the Office of Science of the U.S. Department of Energy under

contracts DE-AC02-06CH11357 and DE-AC05-00OR22725, respec-

tively. This work was supported in part by the National Science Foun-

dation (NSF) through NSF-0937928 and NSF-0724599. This work is

supported in a part by the German Research Foundation (DFG) in the

Collaborative Research Center 912 “Highly Adaptive Energy-Efficient

Computing“.

The general enhancement of the VampirTrace and Vampir tools at

TU Dresden for full-size runs on large-scale HPC systems is supported

with funding and cooperation by ORNL and UT-Battelle.

References

1. SYSIO. http://sourceforge.net/projects/libsysio.
2. ABBASI, H., WOLF, M., EISENHAUER, G., KLASKY, S.,

SCHWAN, K., AND ZHENG, F. DataStager: Scalable data stag-

ing services for petascale applications. In Proceedings of the 18th

ACM International Symposium on High Performance Distributed

Computing (HPDC) (2009), pp. 39–48.
3. ADHIANTO, L., BANERJEE, S., FAGAN, M., KRENTEL, M.,

MARIN, G., MELLOR-CRUMMEY, J., AND TALLENT, N. R.

HPCToolkit: Tools for performance analysis of optimized paral-

lel programs. Concurr. Comput. : Pract. Exper. 22, 6 (Apr. 2010),

685–701.
4. ALI, N., CARNS, P., ISKRA, K., KIMPE, D., LANG, S.,

LATHAM, R., ROSS, R., WARD, L., AND SADAYAPPAN, P. Scal-

able I/O forwarding framework for high-performance computing

systems. In Proceedings of the 11th IEEE International Confer-

ence on Cluster Computing (CLUSTER) (2009).
5. BENT, J., GIBSON, G., GRIDER, G., MCCLELLAND, B.,

NOWOCZYNSKI, P., NUNEZ, J., POLTE, M., AND WINGATE, M.

PLFS: A checkpoint filesystem for parallel applications. In Pro-

ceedings of 21st ACM/IEEE International Conference for High

Performance Computing, Networking, Storage and Analysis (SC)

(2009).
6. BLAND, A., KENDALL, R., KOTHE, D., ROGERS, J., AND

SHIPMAN, G. Jaguar: The world’s most powerful computer. In

Proceedings of the 51st Cray User Group Meeting (CUG) (2009).
7. BORTHAKUR, D., GRAY, J., SARMA, J. S., MUTHUKKARUP-

PAN, K., SPIEGELBERG, N., KUANG, H., RANGANATHAN, K.,

MOLKOV, D., MENON, A., RASH, S., SCHMIDT, R., AND

AIYER, A. Apache Hadoop goes realtime at Facebook. In Pro-

ceedings of the 2011 ACM SIGMOD International Conference on

Management of data (2011), pp. 1071–1080.
8. CARNS, P., LIGON III, W., ROSS, R., AND WYCKOFF, P. BMI:

A network abstraction layer for parallel I/O. In Proceedings of

the 19th IEEE International Parallel and Distributed Processing

Symposium, Workshop on Communication Architecture for Clus-

ters (CAC) (2005).
9. CARNS, P. H., LIGON III, W. B., ROSS, R. B., AND THAKUR,

R. PVFS: A parallel file system for Linux clusters. In Proceedings

of the 4th Annual Linux Showcase and Conference (ALS) (2000),

pp. 317–327.

Optimizing I/O Forwarding Techniques for Extreme-Scale Event Tracing 15

10. CHAARAWI, M., DINAN, J., AND KIMPE, D. On the usability of

the MPI shared file pointer routines. In Proceedings of the 19th

European MPI Users’ Group Meeting (EuroMPI) (2012).

11. CHEN, J. H., CHOUDHARY, A., DE SUPINSKI, B., DEVRIES,

M., HAWKES, E. R., KLASKY, S., LIAO, W. K., MA, K. L.,

MELLOR-CRUMMEY, J., PODHORSZKI, N., SANKARAN, R.,

SHENDE, S., AND YOO, C. S. Terascale direct numerical simula-

tions of turbulent combustion using S3D. Computational Science

& Discovery 2, 1 (2009), 015001.

12. CHING, A., CHOUDHARY, A., COLOMA, K., LIAO, W., ROSS,

R., AND GROPP, W. Noncontiguous I/O access through MPI-IO.

In Proceedings of the 3rd IEEE/ACM International Symposium on

Cluster Computing and the Grid (CCGrid) (2003), pp. 104–111.

13. COPE, J., ISKRA, K., KIMPE, D., AND ROSS, R. Bridging HPC

and Grid file I/O with IOFSL. In Proceedings of the Workshop on

State of the Art in Scientific and Parallel Computing (PARA’10)

(2011).

14. DOCAN, C., PARASHAR, M., AND KLASKY, S. DART: A sub-

strate for high speed asynchronous data IO. In Proceedings of the

17th International Symposium on High Performance Distributed

Computing (HPDC) (2008).

15. FRINGS, W., WOLF, F., AND PETKOV, V. Scalable massively

parallel I/O to task-local files. In Proceedings of 21st ACM/IEEE

International Conference for High Performance Computing, Net-

working, Storage and Analysis (SC) (2009).

16. GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S. The Google File

System. SIGOPS Operating Systems Review 37 (Oct. 2003), 29–

43.

17. GYGI, F., DUCHEMIN, I., DONADIO, D., AND GALLI, G. Prac-

tical algorithms to facilitate large-scale first-principles molecular

dynamics. Journal of Physics: Conference Series 180, 1 (2009).

18. HILDEBRAND, D., AND HONEYMAN, P. Exporting storage sys-

tems in a scalable manner with pNFS. In Proceedings of the 22nd

IEEE / 13th NASA Goddard Conference on Mass Storage Systems

and Technologies (MSST) (2005), pp. 18–27.

19. IEEE POSIX Standard 1003.1 2004 Edition. http:

//www.opengroup.org/onlinepubs/000095399/functions/

write.html.

20. ILSCHE, T., SCHUCHART, J., COPE, J., KIMPE, D., JONES,

T., KNÜPFER, A., ISKRA, K., ROSS, R., NAGEL, W. E., AND

POOLE, S. Enabling event tracing at leadership-class scale

through I/O forwarding middleware. In Proceedings of the 21st

international symposium on High-Performance Parallel and Dis-

tributed Computing (New York, NY, USA, 2012), HPDC ’12,

ACM, pp. 49–60.

21. IOR HPC Benchmark. http://sourceforge.net/projects/

ior-sio/.

22. ISKRA, K., ROMEIN, J. W., YOSHII, K., AND BECKMAN, P.

ZOID: I/O-forwarding infrastructure for petascale architectures.

In Proceedings of the 13th ACM SIGPLAN Symposium on Prin-

ciples and Practice of Parallel Programming (PPoPP) (2008),

pp. 153–162.

23. JAGODE, H., DONGARRA, J., ALAM, S., VETTER, J., SPEAR,

W., AND MALONY, A. D. A holistic approach for performance

measurement and analysis for petascale applications. In Proceed-

ings of the 9th International Conference on Computational Sci-

ence (ICCS) (2009), vol. 2, pp. 686–695.

24. JONES, T., DAWSON, S., NEELY, R., TUEL, W., BRENNER, L.,

FIER, J., BLACKMORE, R., CAFFREY, P., AND MASKELL, B.

Improving the scalability of parallel jobs by adding parallel aware-

ness. In Proceedings of the 15th ACM/IEEE International Con-

ference on High Performance Networking and Computing (SC)

(2003).

25. KNÜPFER, A., BRUNST, H., DOLESCHAL, J., JURENZ, M.,

LIEBER, M., MICKLER, H., MÜLLER, M. S., AND NAGEL,

W. E. The Vampir performance analysis tool-set. In Tools for

High Performance Computing (July 2008), M. Resch, R. Keller,

V. Himmler, B. Krammer, and A. Schulz, Eds., Springer Verlag,

pp. 139–155.

26. LIU, N., COPE, J., CARNS, P. H., CAROTHERS, C. D., ROSS,

R. B., GRIDER, G., CRUME, A., AND MALTZAHN, C. On the

role of burst buffers in leadership-class storage systems. In MSST

(2012), IEEE.

27. LOFSTEAD, J. F., KLASKY, S., SCHWAN, K., PODHORSZKI,

N., AND JIN, C. Flexible IO and integration for scientific codes

through the adaptable IO system (ADIOS). In Proceedings of the

6th International Workshop on Challenges of Large Applications

in Distributed Environments (CLADE) (2008), pp. 15–24.

28. MPI FORUM. MPI-2: Extensions to the Message-Passing Inter-

face. http://www.mpi-forum.org/docs/docs.html, 1997.

29. MUELDER, C., GYGI, F., AND MA, K.-L. Visual analysis of

inter-process communication for large-scale parallel computing.

IEEE Transactions on Visualization and Computer Graphics 15, 6

(2009), 1129–1136.

30. MUELDER, C., SIGOVAN, C., MA, K.-L., COPE, J., LANG, S.,

ISKRA, K., BECKMAN, P., AND ROSS, R. Visual analysis of I/O

system behavior for high-end computing. In Proceedings of the

3rd International Workshop on Large-Scale System and Applica-

tion Performance (LSAP) (2011).

31. NCSA. HDF5. http://hdf.ncsa.uiuc.edu/HDF5/.

32. NISAR, A., LIAO, W., AND CHOUDHARY, A. Scaling parallel

I/O performance through I/O delegate and caching system. In Pro-

ceedings of 20th ACM/IEEE International Conference for High

Performance Computing, Networking, Storage and Analysis (SC)

(2008).

33. OHTA, K., KIMPE, D., COPE, J., ISKRA, K., ROSS, R., AND

ISHIKAWA, Y. Optimization techniques at the I/O forwarding

layer. In Proceedings of the 12th IEEE International Conference

on Cluster Computing (CLUSTER) (2010).

34. PEDRETTI, K., BRIGHTWELL, R., AND WILLIAMS, J. CplantTM

runtime system support for multi-processor and heterogeneous

compute nodes. In Proceedings of the 4th IEEE International

Conference on Cluster Computing (CLUSTER) (2002), pp. 207–

214.

35. Petascale Data Storage Institute. http://www.pdsi-scidac.

org/.

36. PETERKA, T., GOODELL, D., ROSS, R., SHEN, H.-W., AND

THAKUR, R. A configurable algorithm for parallel image-

compositing applications. In Proceedings of 21st ACM/IEEE In-

ternational Conference for High Performance Computing, Net-

working, Storage and Analysis (SC) (2009).

37. ROMEIN, J. FCNP: Fast I/O on the Blue Gene/P. In Parallel and

Distributed Processing Techniques and Applications (PDPTA)

(2009).

38. SHENDE, S. S., AND MALONY, A. D. The TAU parallel perfor-

mance system. Int. J. High Perform. Comput. Appl. 20, 2 (May

2006), 287–311.

39. SHIPMAN, G., DILLOW, D., ORAL, S., AND WANG, F. The

Spider center wide file system; from concept to reality. In Pro-

ceedings of the 51st Cray User Group Meeting (CUG) (2009).

40. SNYDER, P. tmpfs: A virtual memory file system. In Proceed-

ings of the Autumn 1990 European UNIX Users Group Conference

(1990), pp. 241–248.

41. TALLENT, N. R., MELLOR-CRUMMEY, J., FRANCO, M., LAN-

DRUM, R., AND ADHIANTO, L. Scalable fine-grained call path

tracing. In Proceedings of the international conference on Super-

computing (New York, NY, USA, 2011), ICS ’11, ACM, pp. 63–

74.

42. VISHWANATH, V., HERELD, M., ISKRA, K., KIMPE, D., MO-

ROZOV, V., PAPKA, M., ROSS, R., AND YOSHII, K. Accelerating

I/O forwarding in IBM Blue Gene/P systems. In Proceedings of

22nd ACM/IEEE International Conference for High Performance

Computing, Networking, Storage and Analysis (SC) (2010).

16 Ilsche, T. et al

43. WYLIE, B. J. N., GEIMER, M., MOHR, B., BÖHME, D.,

SZEBENYI, Z., AND WOLF, F. Large-scale performance anal-

ysis of Sweep3D with the Scalasca toolset. Parallel Processing

Letters 20, 4 (2010), 397–414.

44. YOSHII, K., ISKRA, K., NAIK, H., BECKMAN, P., AND

BROEKEMA, P. C. Performance and scalability evaluation of “Big

Memory” on Blue Gene Linux. International Journal of High Per-

formance Computing Applications 25, 2 (2011), 148–160.

45. YU, H., SAHOO, R. K., HOWSON, C., ALMÁSI, G.,

CASTAÑOS, J. G., GUPTA, M., MOREIRA, J. E., PARKER, J. J.,

ENGELSIEPEN, T. E., ROSS, R. B., THAKUR, R., LATHAM,

R., AND GROPP, W. D. High performance file I/O for the Blue

Gene/L supercomputer. In Proceedings of the 12th International

Symposium on High-Performance Computer Architecture (HPCA)

(2006), pp. 187–196.

Optimizing I/O Forwarding Techniques for Extreme-Scale Event Tracing 17

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (“Argonne”).

Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357.

The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide li-

cense in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display

publicly, by or on behalf of the Government.

